
Chaos theory - bouncing ball 

 

Use your calculator to plug in some numbers. Start with a value for x, say  x=0.2, apply your equation 
and get y=0.64.  

Now try again, this time using this new value for x: plug in x=0.64 and get y=0.9216.  

Go again, with the new value x=0.9216 and get y=0.28901376.  

 

Carry on repeating this process (called iterating) for as long as takes your fancy, and you'll get a 
sequence of numbers: 

0.2, 0.64, 0.9216, 0.28901376, ________________, ________________, ________________ 

What do you think would have happened if you had started this process with a value of 0.2001 for x 
rather than 0.2? Those two numbers are very close, almost the same, so you would think they'd 
produce a fairly similar sequence of numbers... 

____,____,_________,_____________, ________________, ________________, ________________ 

Try this on a spreadsheet and graph your two sequences (against sequence number). What do you 
notice? 

Then watch https://www.youtube.com/watch?v=6z4qRhpBIyA 

Then try and recreate by adapting this trinket https://trinket.io/python/a900f88d52. 



 

 

To the average layperson, the concept of chaos brings to mind images of complete randomness. Yet 
to scientists, it denotes stochastic behavior occurring in a deterministic system: namely, systems that 
are so sensitive to measurement that their output appears random, even though there is an 
underlying order. This seemingly paradoxical viewpoint was born when a mathematician turned 
meteorologist named Edward Lorenz made a serendipitous discovery that subsequently spawned 
the modern field of chaos theory and changed forever the way we look at nonlinear systems like the 
weather. 

 

Even as a boy, Lorenz was fascinated by the weather, monitoring the thermometer and recording 
highs and lows outside his parents' house in West Hartford, Connecticut. He was also interested in 
mathematics, often solving puzzles with his father. After graduating from Dartmouth College in 
1938, Lorenz planned to go into math, but World War II intervened: he served as a weather 
forecaster in the Army Air Corps. Afterwards, he decided to stick with meteorology, making an early 
name for himself by publishing on such topics as the general circulation of the atmosphere. 

 

But he was particularly intrigued by weather prediction, which was still largely intuitive guesswork, 
despite the assistance of scientific instrumentation. With the advent of computers, Lorenz saw the 
chance to combine mathematics and meteorology. He set out to construct a mathematical model of 
the weather using a set of differential equations representing changes in temperature, pressure, 
wind velocity, and the like. By the early 1960s, Lorenz had managed to create a skeleton of a 
weather system from a handful (12) of differential equations. He kept a continuous simulation 
running on an extremely primitive computer, which would produce a day's worth of virtual weather 
every minute. The system was quite successful at pro ducing data that resembled naturally occurring 
weather patterns nothing ever happened the same way twice, but there was clearly an underlying 
order. 

 

One day in the winter of 1961, Lorenz wanted to examine one particular sequence at greater length, 
but he took a shortcut. Instead of starting the whole run over, he started midway through, typing 
the numbers straight from the earlier printout to give the machine its initial conditions. Then he 
walked down the hall for a cup of coffee, and when he returned an hour later, he found an 
unexpected result. Instead of exactly duplicating the earlier run, the new printout showed the virtual 
weather diverging so rapidly from the previous pattern that, within just a few virtual "months", all 
resemblance between the two had disappeared. 



 

At first Lorenz assumed that a vacuum tube had gone bad in his computer, a Royal McBee, which 
was extremely slow and crude by today's standards. Much to his surprise, there had been no 
malfunction. The problem lay in the numbers he had typed. Six decimal places were stored in the 
computer's memory: .506127. To save space on the printout, only three appeared: .506. Lorenz had 
entered the shorter, rounded-off numbers assuming that the differenceone part in a thousandwas 
inconsequential. 

It seemed a reasonable assumption. Scientists are often taught that small initial perturbations lead 
to small changes in behavior in any given physical system, and even today, temperature is not 
routinely measured within one part in a thousand. Lorenz's computer used a purely deterministic 
system of equations, so that given a particular starting point, the "weather" would unfold exactly the 
same way each time, while a slightly different starting point would cause the weather to unfold in a 
slightly different way. Lorenz figured a small numerical variation was similar to a small puff of wind, 
unlikely to significantly impact important, large-scale features of the weather. Yet in Lorenz's 
particular system of equations, such small errors proved catastrophic. Today, this phenomenon is 
known as sensitive dependence on initial conditions. Lorenz subsequently dubbed his discovery "the 
butterfly effect": the nonlinear equations that govern the weather have such an incredible sensitivity 
to initial conditions, that a butterfly flapping its wings in Brazil could set off a tornado in Texas. And 
he concluded that long-range weather forecasting was doomed. 

In the past, such observed behaviour namely, random fluctuations coming from what should be a 
completely deterministic set of equations had been discarded as simply an error in calculation. 
Lorenz was the first to recognize this erratic behavior as something other than error; what he saw 
was undeniable order, born out of randomness. Not only was this the first clear demonstration of 
sensitive dependence on initial conditions, but Lorenz showed that this occurred in a simple but 
physically relevant model. 

Lorenz then created a new system with three nonlinear differential equations, a reduced model of 
convection known as the "Lorenz Attractor." He hypothesized that the graph he created to model 
the motion would either reach equilibrium and stop, or create a loop that would eventually be 
reformed and retraced, indicating a repeating pattern. Instead, his map displayed an infinite 
complexity, always staying with certain bounds, but never repeating itself either. It traced a 
distinctive double-spiral shape, aptly resembling a butterfly with its two wings. 

 

Since Lorenz's discovery, computer modeling has succeeded in changing the weather business from 
an art into a science, yet beyond two or three days, even the world's best forecasts are still 
speculative, and beyond a week, they are worthless. Such is the paradox that is chaos. 

 


