Lycee Francais, London, UK

Clock

arithmetic

\mathbf{x}	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{2}$	4	6	8	0	2	4
$\mathbf{3}$	6	9	2	5	8	1
$\mathbf{4}$	8	2	6	0	4	8
$\mathbf{5}$	0	5	0	5	0	5

Modulo 10

+	$\mathbf{3}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 1}$
$\mathbf{3}$	6	11	1	2
$\mathbf{8}$	11	4	6	7
$\mathbf{1 0}$	1	6	8	9
$\mathbf{1 1}$	2	7	9	10

Modulo 12

+	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	2	4	5	0
$\mathbf{3}$	4	0	1	2
$\mathbf{4}$	5	1	2	3
$\mathbf{5}$	0	2	3	4

Modulo 6

\mathbf{x}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{2}$	2	4	3	5
$\mathbf{3}$	3	6	0	3
$\mathbf{5}$	5	1	3	8
$\mathbf{6}$	6	3	0	8

Modulo 9

\mathbf{x}	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{2}$	6	1	5	7
$\mathbf{3}$	9	7	2	5
$\mathbf{5}$	4	8	7	1
$\mathbf{8}$	2	4	9	6

Modulo 11

Modulo 8

+	3	4	5	6
3				
4				
5				
6				

12
Clock

Another way to
think about
these calculations

Imagine only 14 hours in the day .. so a 7 hour clock!

Challenge questions to think about

On a 7 hour clock:

- Adding 1 or adding 8 to a number gives the same result. Why?
- When multiplying by 7 we always go back to zero. Why?
- Why does multiplying by 2 give the same result as multiplying by 9 ?
- Square the numbers on the modulus clock. Are there any unobtainable numbers?

In general:

- What multiplication is this:

Geogebra app

https://www.geogebra.org/m/ez8snvf5

Find the Remainder when divided by 7

$$
3^{2001}=\underbrace{3 \times 3 \times 3 \ldots \times 3}_{2001 \text { of these }!}
$$

