Conjecture:

$n^{2}+n+41$ always generates a prime number.

Conjecture:

After $1, L(n)$ is never positive

Number (n)	Prime factor decomposition	Type	Liouville's function L(n) (cumulative, add one if even, subtract 1 if odd)
1		Even	1
2	2	Odd	0
3	3	Odd	-1
4	2×2	Even	0
5	5	Odd	-1
6	2×3	Even	0
7	7	Odd	-1
8	$2 \times 2 \times 2$	Odd	-2
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			

Conjecture:

Using the following rules, all positive integers reach the number 1.
Think of an positive integer. If it is equal to 1 , stop. If it is even, divide it by 2 .
If it is odd, multiply it by 3 and add 1 .
With the new number you get, repeat the instructions above.

