

Find the remainder

Introduction

You could start this activity with just the question "What is the remainder when 3^{2001} is divided by 7?". Students may try to use there calculators – but most calculators won't be able to calculate 3^{2001} . The answer is 954 digits long!! It is:

5	24361	3 755	167	954	828	979	923	857	493	981	711	587	187	462	305 5	565 9	5534	4356	64
	03543	2058	3 798	681	826	467	874	459	409	594	043	333	226	826	852	088	435	8297	766
	31410	5 307	626	525	942	543	242	606	280	915	445	618	737	140	269	931	538	1445	588
	88543	4961	570	557	957	428	044	513	272	178	232	670	643	501	501	943	441	8074	156
	77710	5716	5 207	816	452	294	413	870	938	105	653	077	475	718	233	955	931	9937	749
	57103	1134	1308	987	885	939	219	621	006	883	925	988	857	792	735	239	251	4125	587
	38742	2 2 7 3	316	333	312	065	906	438	454	426	044	272	265	990	459	807	203	7992	275
	09843	9667	7269	473	952	525	386	702	435	819	190	926	993	671	431	212	971	0812	241
	20971	9933	3 273	595	890	540	220	281	137	133	747	311	608	282	671	064	147	3240	069
	73241	7549	083	887	453	233	235	393	318	550	535	683	885	805	663	809	444	2602	250
	34772	9366	521	948	221	255	956	122	138	193	777	640	388	129	452	213	424	9435	505
	05403	9274	170	717	846	277	739	105	933	248	455	589	414	255	829	810	787	4492	232
	835 47	2799	226	232	852	856	734	803	555	466	806	242	315	240	357	878	079	6384	170
	575 80	0169	895	813	826	209	383	776	296	743	889	809	027	737	938	309	469	0318	363
	12632	8378	8 066	808	141	124	600	612	569	413	823	932	072	501	849	303	292	8702	244
	00170	1 1 4 0	931	218	464	169	473	646	337	349	975	021	457	162	331	320	003		

This is a puzzle that shows you can use patterns in smaller numbers to work out the answer to a bigger problem.

The "remainder when divided by 7", is called mod 7 in maths. The mod stands for modulo.

 $35 \mod 7 = 0$ because there is no remainder when you divide by 7.

36 mod 7 = 1 because there is a remainder of 1 when you divide by 7.

You could do the following activity to discuss the idea:

Ask students to get into groups of 7. How many people are left over? This is the remainder.

Solution

Power of 3	Equal to (x)	Remainder when divided by 7 <i>x mod 7</i>
30	1	1
31	3	3
3 ²	9	2
3 ³	27	6
34	81	4
35	243	5
36	729	1
37	2187	3
3 ⁸	6561	2
3 ⁹	19683	6
3 ¹⁰	59049	4
3 ¹¹	177147	5

There is a pattern that is repeating itself every six numbers:

Remainder when divided by 7	Powers of 3
1	0, 6, 12,
3	1, 7, 13,
2	2, 8, 14,
6	3, 9, 15,
4	4, 10, 16,
5	5, 11, 17,

So we just need to find out which list 2001 would be in.

The first list 0,6,12 are all multiples of 6 (0 mod 6)

The second list 1,7,13 are all one more than a multiple of 6 (1 mod 6)

The third list 2, 8, 14 are all two more than a multiple of 6 (2 mod 6)

etc

Remainder when divided by 7	Powers of 3	Remainder when divided by 6
1	0, 6, 12,	0
3	1, 7, 13,	1
2	2, 8, 14,	2
6	3, 9, 15,	3
4	4, 10, 16,	4
5	5, 11, 17,	5

So we just need to find the remainder when we divide 2001 by 6 (i.e. what is 2001 mod 6).

2001 mod 6 = 3, so 2001 would appear in the list 3,9,15, so the answer is 6.

Here is another way to think about this problem (without working out the powers!!) This is the power of mod arithmetic:

Power of 3	Equal to (x)	Just multiply	Remainder when	
		previous answer	divided by 7	
		by 3	x mod 7	
30	1	1	1	
31	3	3×1=3	3	
3 ²	9	3×3=9=2	2	
3 ³	27	3×2=6	6	
34	81	3×6=18=4	4	
35	243	3×4=12=5	5	
36	729	3×5=15=1	1	
37	2187	3×1=3	3	
38	6561	3×3=9=2	2	
39	19683	3×2=6	6	
310	59049	3×6=18=4	4	
311	177147	3×4=12=5	5	

We can then say 3^{2001}

$$^{01} = 3^3 \times 3^{1998} (mod7)$$

$$= 3^{3} \times (3^{6})^{333} (mod7)$$

$$= 6 \times (1)^{333} (mod7)$$

$$= 6 \times 1 (mod7)$$

$$= 6 (mod 7)$$
Chosen because
3^{6} = 1

So answer is **6**.

Or you can think about $3^{2001} = 3^{201} = 3^{21} = 3^3 = 6 \pmod{7}$

Extension

This problem comes from from the Nrich website https://nrich.maths.org/373.

What is the remainder when 5³⁰¹⁹ is divided by 7? **Answer is 5.**