** - Facilitator

Find the remainder

Introduction

You could start this activity with just the question "What is the remainder when 3^{2001} is divided by 7 ?". Students may try to use there calculators - but most calculators won't be able to calculate 3^{2001}. The answer is 954 digits long!! It is:

```
5243613755167954828979923857493981711587187462105565553435664
```



``` 571031134308987885939219621006883925988857792735239251412587
```



``` 209719933273595890540220281137133747311608282671064147324069
```



``` 054039274170717846277739105933248455589414255829810787449232 8354727992262328528567348035554668062423152401357878079638470
```



``` 0017011409312184641694736463373499750214571621331320003
```

This is a puzzle that shows you can use patterns in smaller numbers to work out the answer to a bigger problem.

The "remainder when divided by 7 ", is called mod 7 in maths. The mod stands for modulo.
$35 \bmod 7=0$ because there is no remainder when you divide by 7 .
$36 \bmod 7=1$ because there is a remainder of 1 when you divide by 7 .
You could do the following activity to discuss the idea:
Ask students to get into groups of 7. How many people are left over? This is the remainder.

Solution

Power of 3 Equal to (x)	Remainder when divided by 7 x mod 7	
3^{0}	1	1
3^{1}	3	3
3^{2}	9	2
3^{3}	27	6
3^{4}	81	4
3^{5}	243	5
3^{6}	729	1
3^{7}	2187	3
3^{8}	6561	2
3^{9}	19683	6
3^{10}	59049	4
3^{11}	177147	5

There is a pattern that is repeating itself every six numbers:

Remainder when divided by 7	Powers of 3
1	$0,6,12, \ldots$
3	$1,7,13, \ldots$
2	$2,8,14, \ldots$
6	$3,9,15, \ldots$
4	$4,10,16, \ldots$
5	$5,11,17, \ldots$

So we just need to find out which list 2001 would be in.

The first list 0,6,12 are all multiples of $6(0 \bmod 6)$
The second list $1,7,13$ are all one more than a multiple of $6(1 \bmod 6)$
The third list $2,8,14$ are all two more than a multiple of $6(2 \bmod 6)$
etc

Remainder when divided by 7	Powers of 3	Remainder when divided by 6
1	$0,6,12, \ldots$	0
3	$1,7,13, \ldots$	1
2	$2,8,14, \ldots$	2
6	$3,9,15, \ldots$	3
4	$4,10,16, \ldots$	4
5	$5,11,17, \ldots$	5

So we just need to find the remainder when we divide 2001 by 6 (i.e. what is $2001 \bmod 6$). $2001 \bmod 6=3$, so 2001 would appear in the list $3,9,15, \ldots$. so the answer is 6.

Here is another way to think about this problem (without working out the powers!!) This is the power of mod arithmetic:

Power of 3	Equal to (x)	Just multiply previous answer by 3	Remainder when divided by 7 x mod 7	
3^{0}	1	1	1	
3^{1}	3	$3 \times 1=3$	3	
3^{2}	9	$3 \times 3=9=2$	2	
3^{3}	27	$3 \times 2=6$	6	
3^{4}	81	$3 \times 6=18=4$	4	
3^{5}	243	$3 \times 4=12=5$	5	
3^{6}	729	$3 \times 5=15=1$	1	
3^{7}	2187	$3 \times 1=3$	3	
3^{8}	6561	$3 \times 3=9=2$	2	
3^{9}	19683	$3 \times 2=6$	6	
3^{10}	59049	$3 \times 6=18=4$	4	
3^{11}	177147	$3 \times 4=12=5$	5	

We can then say

$$
\begin{aligned}
3^{2001}= & 3^{3} \times 3^{1998}(\bmod 7) \\
= & 3^{3} \times\left(3^{6}\right)^{333}(\bmod 7) \\
= & 6 \times(1)^{333}(\bmod 7) \\
& =6 \times 1(\bmod 7) \\
& =6(\bmod 7)
\end{aligned}
$$

So answer is 6.
Or you can think about $3^{2001}=3^{201}=3^{21}=3^{3}=6(\bmod 7)$

Extension

This problem comes from from the Nrich website https://nrich.maths.org/373.
What is the remainder when $5{ }^{3019}$ is divided by 7? Answer is 5 .

