The Logistic Map
$x_{n+1}=2 x_{n}+1$ when $x_{0}=3$

x_{0}	
x_{1}	
x_{2}	
x_{3}	
x_{4}	

$x_{n+1}=0.5 x_{n}$ when $x_{0}=100$

x_{0}	
x_{1}	
x_{2}	
x_{3}	
x_{4}	

$x_{n+1}=0.5 x_{n}+1$ when $x_{0}=3$

x_{0}	
x_{1}	
x_{2}	
x_{3}	
x_{4}	

Fill in the table for each sequence above. What is going to happen to each one if you carry on the sequence for a long time?

Now we are going to look at a special sequence used to analyse poplulation size of, say, rabbits.
The terms $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \ldots x_{n}$ are going to represent the population of rabbits every year. The numbers in the sequence are always going to be between 0 and 1 , and will represent a proportion of rabbits

no rabbits
maximum rabbits
The sequence is called The Logistic Map and looks like this:

$$
x_{n+1}=a x_{n}\left(1-x_{n}\right)
$$

We are always going to start with $x_{0}=0.5$ (half capacity of rabbits), but we are going to try different values of a, where a represents the fertility of the rabbits.
$a=2.3$

x_{0}	
x_{1}	
x_{2}	
x_{3}	
x_{4}	

$a=0.65$

x_{0}	
x_{1}	
x_{2}	
x_{3}	
x_{4}	

$a=3.2$

x_{0}	
x_{1}	
x_{2}	
x_{3}	
x_{4}	

What is happening for each sequence?
Try creating a graph on Geogebra with y axis being the population (from 0 to 1) and the x axis being the number in the sequence (say from 0 to 50 to show terms $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \ldots x_{50}$). The first point on your graph will be $(0,0.5)$ as we are starting with a proportion of 0.5 rabbits. You can use a slider to represent a so that you can see how the sequence changes as you change a.

See the Geogebra instructions if you need some help.
You should see some very strange behaviour for different values of a.

